Skip to main content

Webinar Re-cap: The Role of Inflammatory Signals in Embryonic HSC Development and Adult HSC Function

Inflammation is a double-edged sword. Inflammatory signals are needed to fight infections, yet too much can contribute to hematologic diseases such as bone marrow failure and malignancy. In recent years since the discoveries from our group and the group of Peggy Goodell that the pro-inflammatory cytokines Interferonα (IFNα) and IFNγ lead to activation of quiescent hematopoietic stem cells (HSCs) in vivo, there has been a revival to uncover the role of these cytokines in the HSCs and the hematopoietic system as a whole. A recent webinar from ISEH entitled “The Role of Inflammatory Signals in Embryonic HSC Development and Adult HSC Function” presents work exploring the role of inflammation in disease and development from leaders in the field- Markus Manz (University Hospital in Zurich), Trista North (Harvard Medical School), and moderated by Katherine King (Baylor College of Medicine).

In general, pro-inflammatory cytokines are produced by cells of the immune system in response to an infection or inflammation. Classically, they are thought to play an important role in the defense against infection by imposing an anti-proliferative effect on differentiated hematopoietic cells, thus preventing the virus from spreading around the body. However, our study and that of the Goodell group in 2009-2010 showed that in the adult mouse, quiescent HSCs directly respond to IFNα or IFNγ, leading to increased proliferation of these cells. These data suggested that HSCs themselves are able to directly respond to infections.
In this most recent ISEH webinar, Dr. Markus Manz gave us an overview of the effect of inflammation on adult HSCs. Over the last years, the Manz lab has published several manuscripts on the direct versus indirect sensing of pathogens by HSCs and the consequences of this on HSCs. In the webinar, Manz started off describing clinical observations that systemic bacterial infections in patients can lead to a demand-adapted response, suggesting stem and progenitor cells dynamically sense and adapt to environmental signals during infection. By creating tissue-specific knock-out lines for Myd88 (a critical adapter for many inflammatory signaling pathways), they could show that endothelial cells in the BM catalyze demand-adapted granulopoiesis resulting from systemic infection in the mouse. He went on further to show that HSCs express Toll-like receptor 4 (TLR4) and can proliferate in response to the bacterial pattern recognition molecule lipopolysaccharide (LPS). Manz then presented new data using a CFSE-labeling HSC assay to assess division history to determine which clinically relevant cytokine/chemokine receptor agonists/antagonists drive HSCs into self-renewing divisions. Their data combined with work from others that depending on the type of pathogen HSCs can either directly or indirectly sense and respond to infection.
Clonal hematopoiesis with somatic mutations is a common age-related condition and inflammation increases with age. Clinical reports indicate a correlation between a history of major infections and the development of MDS/AML in patients. At the end of his presentation, Manz connected the dots and gave his perspective on how infection-induced effects on quiescent HSCs influence hematopoietic ageing and age-related disease. Future experiments testing whether severe infections affecting the quiescent HSC pool increase the risk for the development of malignancies will demonstrate if these clinical correlations are truly driving forces.
In the second half of the webinar, Dr. Trista North talked about the role of these same pro-inflammatory signals during the emergence of the first HSCs in the embryo. Trista gave us a great overview of the recently discovered new role for pro-inflammatory cytokines like IFNs and Tumor necrosis factor α (TNFα) during development. In the embryo, the first hematopoietic stem and progenitor cells (HSPCs) arise in the aorta/gonad/mesonephros (AGM) region from hemogenic endothelium. Several groups (including North, Nancy Speck, David Traver, Victor Mulero, Didier Stainier, and Feng Liu) recently demonstrated a novel function for interferons and TNFα signaling during the emergence of the first HSCs in the AGM in zebrafish and mice. They showed that key molecules involved in innate immunity and inflammation are expressed in emerging stem and progenitor cells as well as endothelial cells in the AGM region. During embryonic development, formation of primitive myeloid cells precedes the birth of definitive HSCs. Genetic ablation studies in zebrafish revealed that these primitive myeloid cells are the source of the inflammatory cytokines important for HSC emergence. North also showed new data from a screen performed in zebrafish identifying other inflammatory cytokines utilized during HSC formation. As many of the inflammatory cytokines employed during HSC emergence and the response of adult HSCs to infection are conserved, the screens from Manz and North will be mutually beneficial informing new players critical for HSCs from embryo to old age.
In summary, the data presented in this webinar by Markus Manz and Trista North showed again that there is much more to pro-inflammatory signaling in the hematopoietic system than their role in clearance of infections. Pro-inflammatory signaling plays a role in hematopoiesis from development until adulthood, from the quiescent HSC to the differentiated cells of the system. The great challenge of the future is to understand how pro-inflammatory signaling is influencing these different aspects of hematopoiesis and what the consequences are for ageing and malignancies.
The webinar is now available for viewing online, at your convenience.  Webinars are free to ISEH members. To view this ISEH webinar, or learn about past and upcoming webinars, check out

Marieke Essers, PhD
ISEH Publications Committee Member
Group leader
'Hematopoietic Stem Cells and Stress'
Division of Stem Cells and Cancer
Deutsches Krebsforschungszentrum (DKFZ)
HI-STEM - Heidelberg Institute for Stem Cell Technologies and Experimental Im Neuenheimer Feld 280, 69120 Heidelberg



Popular posts from this blog

How to Make the Most Out of Your Lab’s Move

“The lab is moving!” I must confess, when I heard these words from my mentor about a year and a half ago, my heart dropped. Lab relocation experiences are some of the worst horror stories that you hear from fellow researchers: precious samples lost, mouse colonies never recovered, months spent re-establishing protocols. Moreover, it also meant I would have to leave San Francisco, a beautiful city that I loved to live in, and where I found many friends. Being a scientist often means not having much choice of geographic location of your work. The choice of a particular subject or even broad field usually requires a move to a new city, or even a new country. Moving with the lab means making this choice again – do I leave my project and all the progress behind, or do I accept the delay in my research and go ahead. Now, two months after our move to New York, I would like to reflect on my experiences and that of my fellow lab members on our cross-country relocation from the trainee perspect…

The cost of a postdoctoral experience and its impact on STEM diversity

Academic diversity in the biological sciences isn't what it should be.  At the most basic level, representation by underrepresented groups in the top research universities in the United States is less than 5%1.  Despite gains in enrollment of underrepresented students in the biological sciences at the undergraduate and doctoral levels, these gains do not extend to the tenure-track realm, where representation has changed very little over the past three decades. 

At another level, because of the ferocious degree of competition in science today - for publication in high impact journals, for limited grant funds, for fewer tenure-track positions -- one might argue that academic diversity is slowly been shaped by a "1%" mindset.  Perhaps more than ever before, the institution you come from-- even the lab you come from-- influences where you will publish, whether you will attain funding, and ultimately whether you will succeed. My purpose here is not to grumble; I'm sure th…

When people can…

As long as I can remember, there were people marching on the streets, either protesting or celebrating or even supporting the topic of the manifestation. It always fascinated me how powerful people can be, when they come together. In cases of manipulation of the public opinion this is of course not good. However, many times this can influence things in a positive way. Coming from a country like Greece, I have to admit that it was fairly frequent for me to see people getting together on the streets for a variety of reasons. Then, when I moved myself and my life to Boston, these events happened less frequently. I remember that I joined a protest in Boston once (although maybe this is not the right time to admit such a thing). It was about the Gulf war and people wanting their children to come back home. The subject of the protest was noble, however only a few people participated. Thus, it was to my great surprise and satisfaction when on April 22nd, 2017 the March for Science was organi…